Biyernes, Abril 01, 2011

Strength of Materials Formulas

Stress
stress
where,       σ=normal stress, or tensile stress, pa
                  P=force applied, N 
                  A=cross-sectional area of the bar, m2
                    =shearing stress, Pa
                  As=total area in shear, m2


Strain
strain
where,
                =tensile or compressive strain, m/m
                =total elongation in a bar, m
                =original length of the bar, m


Hooke's Law
Stress is proportional to strain
hooke's law
where,
E=proportionality constant called the elastic modulus or modulus of elasticity or Young’s modulus, Pa


Piosson's Ratio
piosson's ratio
where,
                v=Poisson’s ratio
                =lateral strain
                =axial strain


Unit Volume Change
unit volume change
where,
                  =change in volume
                  =original volume
                  =strain
                  =Poisson’s ratio


Elongation due to its weight
elongation due to its weight
where,
=total elongation in a material which hangs vertically under its own weight              
W=weight of the material


Thin Rings
thin rings
where,
                =Circumferential or hoop Stress
                S=Circumferential or hoop tension
                A=Cross-sectional area
                =Circumferential strain
                E=Young’s modulus


Strain Energy
strain energy
where,
                U=total energy stored in the bar or strain energy
                P=tensile load
   =total elongation in the bar
    L=original length of the bar
    A=cross-sectional area of the bar
    E=Young’s modulus
                U=strain energy per unit volume  
                 strain energy


Thin Walled Pressure vessels
thin walled pressure vessels
where,
                =normal or circumferential or hoop stress in cylindrical vessel, Pa
                =normal or circumferential or hoop stress in spherical vessel,  Pa  and longitudinal stress around the circumference
                  P=internal pressure of cylinder, Pa
                  r=internal radius, m
                  t=thickness of wall, m


Mohr's Circle for Biaxial Stress
mohr's circle for biaxial stress


Pure Shear
pure shear
where,
                =Shearing Stress, Pa
                =Shearing Strain or angular deformation
                G=Shear modulus, Pa
                E=Young’s modulus, Pa
                V=Poisson’s ratio



Torsion formula for Thin walled tubes
torsion formula for thin walled tubes
where,
               =maximum shearing stress, Pa
               =Shearing stress at any point a distance x from the centre of a section
                r=radius of the section, m
                d=diameter of a solid circular shaft, m
               =polar moment of inertia of a cross-sectional area, m4
                T=resisting torque, N-m
                N= rpm of shaft
                P=power, kW
               torsion formula for thin walled tubes=angle of twist, radian
                L=length of shaft, m
                G=shear modulus, Pa
                do=outer diameter of hollow shaft, m
                di=inner diameter of hollow shaft, m

and
               torsion formula for thin walled tubes


Torsion formula for Circular Shafts
torsion formula for circular shafts
where,
                =Ip, polar moment of inertia for thin-walled tubes
                r=mean radius
                t=wall thickness


Flexure Formula
flexure formulae
where,    
                =Stress on any point of cross-section at distance y from the neutral axis
               =stress at outer fibre of the beam
               c=distance measured from the neutral axis to the most remote fibre of the beam
                I=moment of inertia of the cross-sectional area about the centroidal axis


Shear Stress In Bending
shear stress in bending
where,    
                F=Shear force
                Q=statistical moment about the neutral axis of the cross-section
                b=width
                I=moment of inertia of the cross-sectional area about the Centroidal axis.


Thin-Walled Hollow Members (Tubes)
thin-walled hollow members
where,      =shearing stress at any point of a blue
                  t=thickness of tube
                  q=shear flow
                  T=applied torque
                  R=distance between a reference point and segment ds
                  Π=angle of twist of a hollow tube

Stress Concentration
stress concentration

Curved Beam in Pure Bending
curved beam in pure bending
where,     =normal stress
                 M=bending moment
                 dA=cross-sectional area of an element
                 r=distance of curved surface from the centre of curvature
                 A=cross-sectional area of beam
                 R=distance of neutral axis from the centre of curvature
                 R1=distance of centroidal axis from the centre of curvature

Bending of a Beam
(a) Bending of a Beam Supported at Both Ends
bending of a beam
(b) Bending of a Beam Fixed at one end
bending of a beam
where,     d= bending displacement, m
                F=force applied, N
                I=length of the beam, m
                a=width of beam, m
                b=thickness of beam, m
                Y=Young’s modulus, N/m2

Walang komento:

Mag-post ng isang Komento